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EXECUTIVE SUMMARY 
Rutting, or permanent deformation, is one of the most critical pavement distresses in flexible 
pavements. The causes of rutting can be many, but one of the most critical issues in terms of rutting 
prevention is the proper selection of asphalt component materials, including the asphalt binder. Over 
the last two decades, the conventional rutting parameter used by road agencies, G*/sin𝛿𝛿, measured 
at the high Performance Grade (PG) temperature at 10 rad/s, is insufficient for properly 
characterizing asphalt binders. To this end, many agencies have implemented “PG Plus” tests, such as 
elastic recovery using a ductilometer. However, these tests are burdensome and may not be the most 
effective for quantifying high-temperature resistance of the asphalt binder because they are run 
closer to the binder’s intermediate temperature. 

To this end, many agencies have adopted the AASHTO M 332 specification, which includes the 
standard PG grading as well as the multiple stress creep recovery (MSCR) test. MSCR applies repeated 
creep-recovery loading at two stress levels, 0.1 kPa, and 3.2 kPa, with 1 second of creep loading and 9 
seconds of recovery time per cycle, using the existing dynamic shear rheometer (DSR) device. Some 
agencies run this test at 64℃ for all types of asphalt binder, while others run it at a high PG 
temperature. The M 332 specification assigns each asphalt binder an appropriate traffic level and 
speed for use in addition to the climatic grading assigned by conventional PG. In addition, some 
agencies continue to use AASHTO M 320, the standard specification for performance grading of 
asphalt binder, but have added MSCR as a PG Plus test. 

The present study conducted a review of the existing literature on MSCR implementation in the 
United States and around the world. The literature review revealed that a majority of states have 
implemented MSCR in some form into their binder specification, but that there are remaining 
optimizations to be made with respect to the test. Findings are overall mixed in terms of which 
parameters are most effective between the non-recoverable creep compliance (Jnr), the percent 
recovery observed (%R), and the stress sensitivity between the two stress levels (Jnrdiff). Particularly, 
Jnrdiff generally had little relationship with mixture test results, despite its wide adoption. The review 
also revealed that using additional stress levels, extending the recovery time, and other modifications 
to the test could be more useful in capturing actual recovery ability of a binder at high temperatures. 

The second stage of research consisted of a data review of Illinois Department of Transportation’s 
existing MSCR dataset. IDOT has collected extensive MSCR data since 2006 across a wide range of 
asphalt binder sources, mostly among polymer-modified asphalt binder. After removal of outliers, %R 
at both stress levels had the best relationship directly to the elastic recovery test results, and both Jnr 
and %R had almost perfect relationships between the two stress levels. However, the relationship 
between %R and elastic recovery was not sufficient for developing a specification based on this 
parameter alone, so the research team employed bagging and boosting machine learning techniques 
to predict elastic recovery from all MSCR inputs plus the high PG. The extra trees and extreme 
gradient boosting (XGBoost) methods predicted the elastic recovery very well compared to other 
existing tests, with %R at both stress levels serving as the most important factor using both methods, 
and high PG and Jnrdiff having less impact on binder elastic recovery. 
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Overall, this project demonstrated the promise of MSCR, but further study is needed before 
implementation for Illinois-specific materials. The research team suggests conducting a 
comprehensive mixture study using the Hamburg wheel-tracking device to validate MSCR test 
methods, thresholds, and parameters using IDOT mixtures. They also suggest conducting a more 
comprehensive study of unmodified binder and binder modified with softeners in alignment with 
IDOT’s new binder specification, which allows for these types of modifiers to be used when blended 
at the terminal.  
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

NEED FOR SUPPLEMENTAL TEST TO G*/SINδ CRITERION 
Rutting, a prominent distress in flexible pavements, presents as longitudinal depressions within the 
wheel path. Severe rutting not only compromises driver comfort, but also reduces the longevity of 
asphalt pavements, resulting in heightened safety concerns for road users. This distress phenomenon 
primarily arises from the accumulation of permanent deformation within asphalt layers, primarily 
induced by repetitive vehicular loads, notably those imposed by heavy, slow-moving traffic. Extensive 
research has established a direct correlation between pavement distresses and the rheological 
properties of asphalt binder. Consequently, there is a burgeoning interest in developing a 
performance-based rutting indicator that can be seamlessly integrated into the asphalt binder 
grading system.  

In the past, binder susceptibility to permanent deformation was typically assessed using traditional 
test methods like the ring and ball softening point. During the Strategic Highway Research Plan 
studies, Anderson and Kennedy (1993) proposed that G*/sinδ as measured in the dynamic shear 
rheometer (DSR) could be a better indicator of how well binder resists rutting at various 
temperatures, a conclusion primarily based on the performance of unmodified binder. Measuring this 
parameter within the linear range, employing just a few cycles of sinusoidal loading, does not 
properly capture the asphalt binder’s impact on rutting within the mixture, particularly in the case of 
modified binder (D’Angelo et al., 2007). This has led to initiatives aimed at developing new testing 
methods capable of predicting performance irrespective of the type of modification (Bahia et al. 
2001).  

To ensure the enhancement of polymer modification in high-quality asphalt binder, state and local 
highway agencies have required conducting one or more additional Performance Grade (PG) Plus 
tests (e.g., elastic recovery (ER) or toughness and tenacity) alongside the existing PG asphalt binder 
specification. The development of the multiple stress creep recovery (MSCR) test arose from the 
necessity for a standardized procedure to assess both the elastic response and the existence of 
polymer modifiers in asphalt binder as a surrogate to the ER test (D’Angelo et al., 2007). The use of 
MSCR over the conventional PG Plus tests offers notable advantages. First, although it shares 
similarities with the ER test in its ability to detect the presence of elastomeric modifiers, the MSCR 
test provides more precise insights into the behavior and effectiveness of the polymer network within 
the asphalt binder. Moreover, the MSCR test requires no additional equipment beyond the DSR 
device, which is already utilized in many laboratories to perform AASHTO T 315 asphalt binder 
testing. Additionally, it involves less preparation time and significantly reduces testing time compared 
to the ER test, which typically takes several hours to complete. 

HISTORY OF MSCR DEVELOPMENT 
The MSCR test protocol underwent distinct phases in its development. Inspired by the repeated creep 
and recovery test proposed by Bahia et al. (2001), the MSCR test applies 11 stress levels ranging from 
25 to 25,600 Pa to evaluate how asphalt binders’ permanent deformation response differs at various 



2 

stress levels (D’Angelo et al., 2007). This test introduced a novel parameter called non-recoverable 
creep compliance (Jnr), which demonstrated a significantly stronger correlation with rutting observed 
on Accelerated Loading Facility sections compared to the Superpave rutting parameter, G*/sin𝛿𝛿. 
Later, the MSCR test was adopted as a specification test for asphalt binder aged in a rolling thin-film 
oven (RTFO). This version involved two stress levels, 0.1 kPa and 3.2 kPa, with 10 repetitions of the 
creep-recovery loading pattern (1-second creep followed by 9-second recovery) at each stress level. 
Percent recovery (%R) was also introduced to assess the elastic response and stress dependence of 
the tested asphalt binder. In this phase, a relationship between Jnr and the Superpave binder criteria 
was established, leading to the development of an improved grading method. The final phase 
included modifications to enhance the accuracy and reliability of the test, such as increasing the 
number of creep and recovery cycles at 0.1 kPa from 10 to 20 to reach a steady-state condition. 
Additionally, the standard grade criterion for Jnr was adjusted to 4.5 kPa-1 (AASHTO M 332). Table 1 
presents a catalog of the four classifications outlined in AASHTO M 332–14 and ASTM D8239–18. 
With the implementation of MSCR, the conventional practice of grade bumping can be abandoned 
due to its incapacity to accurately mirror real performance characteristics under specific pavement 
design temperature conditions. Note that revising this table is a primary objective of any future 
specification. 

Table 1. MSCR Grading System 

Grade Maximum Non-Recoverable Creep 
Compliance at 3.2 kPa Traffic Condition 

S 4.5 Traffic Level < 10 million ESALs* and Traffic 
Speed > 70 km/h (43.5 mph) 

H 2 Traffic Level 10–30 million ESALs or Traffic 
Speed 20–70 km/h (12.4 – 43.5 mph)  

V 1 Traffic Level > 30 million ESALs or 
Traffic Speed < 20 km/h (12.4 mph) 

E 0.5 Traffic Level > 30 million ESALs and Traffic 
Speed < 20 km/h (12.4 mph) 

* ESAL stands for equivalent single axle load. 

CALCULATION OF JNR AND %R 
The two primary parameters derived from the MSCR test are the non-recoverable creep compliance 
(Jnr) and the percentage of recovery (%R). In order to gain a more comprehensive grasp of Jnr and %R, 
a schematic representation of the strain response of an asphalt binder is provided in Figure 1 as an 
illustrative demonstration. To maintain conciseness, Figure 1 exclusively displays strain information 
from an arbitrary cycle, recorded either at 0.1 kPa or 3.2 kPa.  
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Figure 1. Graph. Sample of single cycle of MSCR test and associated parameters. 

Within this context, 𝜀𝜀0 represents the initial shear strain at the onset of a creep phase, 𝜀𝜀𝑐𝑐 
corresponds to the shear strain at the conclusion of the creep phase, and 𝜀𝜀𝑟𝑟 signifies the recoverable 
shear strain at the termination of the recovery phase. The calculation of non-recoverable creep 
compliance involves dividing the strain that remains unrecovered at the conclusion of the recovery 
phase by the applied shear stress, as indicated in the equation in Figure 2. On the other hand, the 
percentage recovery is ascertained by taking the ratio of the strain that has been recuperated at the 
end of the recovery phase to the shear strain induced at the end of the creep phase, as depicted in 
the equation in Figure 3. 

 
Figure 2. Equation. Non-recoverable creep compliance equation. 

 
Figure 3. Equation. Percentage recovery equation. 

in which 𝜎𝜎 denotes the applied stress measured in kPa (i.e., 0.1 and 3.2 kPa) and 𝑁𝑁 represents the 
count of creep and recovery cycles of interest. Following the application of equations presented in 
Figure 2 and Figure 3 for each cycle, the average non-recoverable creep compliance and average 
percentage recovery are computed for each stress level. This computation is performed to 
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accommodate the variations observed in the measured values. As per the MSCR test protocol, 20 
creep and recovery cycles are carried out at a stress level of 0.1 kPa, while 10 creep and recovery 
cycles are conducted at a stress level of 3.2 kPa. The initial 10 cycles at the lower stress level of 0.1 
kPa serve to condition the specimen, with the subsequent 10 cycles dedicated for data analysis. The 
average non-recoverable creep compliance (𝐽𝐽𝑛𝑛𝑟𝑟0.1) and the average percent recovery (𝑅𝑅0.1) at a stress 
level of 0.1 kPa are calculated using equations in Figures 4 and 5, respectively. Likewise, for a stress 
level of 3.2 kPa, 𝐽𝐽𝑛𝑛𝑟𝑟3.2 and 𝑅𝑅3.2 are determined with equations in Figures 6 and 7, respectively. 

 
Figure 4. Equation. Average non-recoverable creep compliance at 0.1 kPa. 

 
Figure 5. Equation. Average percent recovery at 0.1 kPa. 

 
Figure 6. Equation. Average non-recoverable creep compliance at 3.2 kPa. 

 
Figure 7. Equation. Average percent recovery at 3.2 kPa. 

CORRELATION OF MSCR WITH MIXTURE PERFORMANCE 
Ever since the introduction of the MSCR test, significant efforts have been dedicated to investigating 
its correlation with asphalt mixture rutting performance through various field and laboratory studies. 
While field verification studies solely relied on rut depth (D’Angelo et al., 2007; D’Angelo, 2009), 
laboratory-based research has employed a diverse array of rutting indicators, dependent on the 
specific mixture rutting test chosen. These included the Hamburg wheel-tracking device test (Wasage 
et al., 2011; Zhang et al., 2015; Hajj et al., 2019), the unconfined dynamic creep test (Tabatabaee & 
Tabatabaee, 2010), the flow number test (de Barros et al., 2022; Behnood et al., 2016), and the stress 
sweep rutting test (de Barros et al., 2022), among others. Table 2 summarizes many of these studies 
in detail to provide a sample of the available literature.  

It is important to note that some studies found little to no relationship between MSCR parameters 
and mixture performance. For example, Salim et al. (2019) observed no significant relationship 
between %R at 3.2 kPa and observed a superior performance of both Jnr3.2 and the Superpave rutting 
parameter. The same research also observed a relationship between %R at 3.2 kPa with fatigue 
resistance (Kaloush et al., 2019), which is not usually a used purpose but does relate to the 
conventional ER test.  
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Table 2. A Sample of Studies Presenting Correlation between MSCR Test and Rutting Performance of Asphalt Concrete 

Asphalt Binder Stress 
Level 

Temp 
(°C)  

Rutting Test Temp 
(°C)/ Air 
Void (%) 

MSCR/ AC Rutting 
Test Parameters 

Correlation Reference 

Crosslinked 
Styrene Butadiene 
polymer modifier 
all with PG-HT 58 

11 levels 
from 25 to 
26,500 Pa 

58.0-70.1 Hamburg 
Wheel-
Tracking Test 
(HWTT)  

58.0-70.0 
(7.0% air 
void) 

Jnr at 12,800 Pa/ 
10,000 cycles rut 

Jnr = 0.442x - 0.521 
(R2=0.93) G*/sin(𝛿𝛿) = -
0.084x+3.235 (R2=0.65) 

D’Angelo (2009) 

Polymer content 
2-5% (SBS, EVA, 
and commercial) 

11 levels 
from 25 to 
26,500 Pa 

60.0 French Wheel 
Tracking Test 

60.0 
(7.2% air 
void) 

Jnr at 26,500 Pa/ 
French rutting @ 
30,000 cycles 

Jnr = 0.094x – 0.26 
(R2=0.77) G*/sin = -
30.55ln(x) + 59.29 
(R2=0.27) 

Dreessen et al. 
(2009) 

PG 58-22 modified 
with 3%-15% 
crumb rubber 
(CRM) 

100 and 
3,200 Pa 

52.0-88.0 Unconfined 
Dynamic 
Creep  

40 ± 1  
(4 ± 1% 
air void) 

Jnr at 100 and 
3,200 Pa/ 
Unconfined 
Dynamic Creep 

R2 =0.86 for Jnr at 100 Pa 
R2=0.83 for Jnr at 3200 pa 
R2=0.74 for G*/sin 

Tabatabaee and 
Tabatabaee 
(2010) 

SBS and CRM-
modified binder  

11 levels 
from 25 to 
26,500 Pa 

40.0-60.0 HWTT 40.0-60.0 
(~4% air 
void) 

Jnr at 12,800 Pa/  
rut depth after 
10,000 cycles 

ln(Jnr) = 0.0011 ln(x) 
(R2=0.98) 

Wasage et al. 
(2011) 

PG70-XX or higher 100 and 
3,200 Pa 

64.0-76.0 HWTT and 
Repeated 
Loading 
Permanent 
Deformation 
(RLPD) 

50.0 for 
HWTT 
and 40.0 
for RLPD 
(7 ± 1% 
air void) 

Jnr at 0.1 and 3.2 
KPa/ HWTT rut 
depth at 10,000 
passes; Jnr at 0.1 
and 3.2 KPa/ RLPD 
accumulated at 
10,000 cycles 

HWTT @ 0.1 KPa: R2 of 
0.83, 0.85, and 0.77 at 
64, 70, and 76°C and 
roughly the same values 
@ 3.2 KPa R2=0.44 
between HWTT and 
G*/sin 
 
RLPD: @ 0.1 KPa: R2 of 
0.92, 0.94, and 0.96 at 
64, 70, and 76°C and the 
corresponding values of 
0.88, 0.81, and 0.72 @ 
3.2 KPa R2=0.59 between 
HWTT and G*/sin 

Zhang et al. 
(2015) 
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Asphalt Binder Stress 
Level 

Temp 
(°C)  

Rutting Test Temp 
(°C)/ Air 
Void (%) 

MSCR/ AC Rutting 
Test Parameters 

Correlation Reference 

SBS and ground 
tire rubber- 
modified binder 

100 and 
3,200 Pa 

64.0 Flow Number 
(FN) Test 

51.0  
(7 ± 0.5% 
air void) 

Jnr at 0.1 and 3.2 
KPa/ flow number 

R2 =0.57 for Jnr at 100 Pa 
R2=0.71 for Jnr at 3200 pa 
R2=0.48 and 0.37 for 
G*/sin at Unaged and 
RTFO-aged, respectively 

Behnood et al. 
(2016) 

SBS, CRM, and 
EVA-modified 
binder  

9 levels 
from 100 
to 26,500 
Pa 

60.0 Wheel 
Tracking Test 

60.0  
(7 ± 0.5% 
air void) 

Jnr at 0.1 and 0.8, 
3.2 and 25.6 KPa/ 
rut depth after 
20,000 cycles 
(40,000 passes) 

Rut depth = 2.49x0.3855 for 
Jnr at 3200 Pa (R2=0.99) 
Rut depth = 22.51x-0.284 

for G*/sin (R2=0.43) 

Radhakrishnan 
et al. (2018) 

PG 64-22 from 
three different 
sources 

100 and 
3,200 Pa 

58.0 and 
64.0 

HWTT 50.0  
(7 ± 1% 
air void) 

R0.1, R3.2, Rdiff, Jnr0.1, 
Jnr3.2, and Jnrdif / 
HWTT parameters 
including rut 
depth 

R0.1: R2 =0.49 and 0.33 
(power) at 58 and 64°C; 
R3.2: R2 =0.52 and 0.38 
(power) at 58 and 64°C; 
Rdiff: R2 =0.58 and 0.54 
(Exponential) at 58 and 
64°C; Jnr0.1: R2 =0.57 and 
0.30 (Exponential) at 58 
and 64°C; Jnr3.2: R2 =0.55 
and 0.32 (Exponential) at 
58 and 64°C; Jnrdiff: R2 

=0.55 (Linear) and 0.99 
(Power) at 58 and 64°C 

Walubita et al. 
(2022) 

Highly polymer-
modified  

5 levels 
from 100 
to 26,500 
Pa 

82.0 HWTT and FN 50.0  
(7 ± 1% 
air void) 

Jnr at 6.4, 12.5, 
and 25.6 kPa/ 
HWTT rut depth  
Jnr at 6.4, 12.5, 
and 25.6 kPa/ flow 
number 

HWTT: @ 6.4: Jnr = 0.74x-
1.46 (R2=0.99) @ 12.5: Jnr 
= 1.66x-3.47 (R2=0.93) @ 
25.6: Jnr = 2.43x-4.76 
(R2=0.87) FN: @ 6.4: Jnr = 
-0.0003x +1.18 (R2=0.72) 
@ 12.5: Jnr = -0.0006x + 
2.17 (R2=0.57) @ 25.6: Jnr 
= -0.0008 + 3.43 
(R2=0.48) 

Rajan et al. 
(2023) 
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POTENTIAL IMPROVEMENTS TO THE MSCR TEST PROTOCOL 
Despite the overall good correlation between the MSCR test and asphalt mixture rutting performance 
observed in these studies, there have been instances where research has indicated a weak 
correlation (White, 2017). In this regard, extensive endeavors have been dedicated recently to 
examining the potential enhancement of the MSCR test protocol, with particular emphasis on 
investigating the time patterns of the creep and recovery in each cycle, the adopted number of 
cycles, and applied stress levels. 

Effect of Creep and Recovery Time 
The existing test protocol with creep and recovery durations of 1 and 9 seconds, respectively, may fall 
short in providing a comprehensive understanding of the rutting potential of asphalt binder. Varying 
traffic conditions necessitate extending creep time to characterize asphalt binder behavior under heavy 
and slow traffic (Gaspar et al., 2019), while longer recovery time is needed for complete recovery of 
viscoelastic strain in modified asphalt binder (Liu et al., 2021a; Masad et al., 2009; Zoorob et al., 2012). 
Hence, researchers have altered the MSCR test protocol using different creep and recovery time 
combinations (Gaspar et al., 2019), demonstrating a significant impact on Jnr and recovery behavior.  

For example, Kataware and Singh (2017) investigated different creep and recovery time 
configurations (i.e., 1/9, 2/9, 1/18, 2/18, 1/27, and 2/27 seconds). As expected, they found that 
extending the recovery time leads to reduced non-recoverable creep compliance and higher percent 
recovery compared to the outcomes from the standard MSCR test. On the other hand, increasing 
creep time has a reverse impact on MSCR test output. Upon increasing both creep time and recovery 
time at a 1:9 ratio (i.e., 1/9, 2/18, and 3/27 seconds), Gaspar et al. (2019) found that there was a 
higher level of non-recoverable creep compliance and a lower percentage of recovery, suggesting 
that the influence of increased creep time was more significant compared to the impact of extended 
recovery time. They also explored additional creep recovery time patterns that diverged from actual 
field conditions, such as 1/240 and 1/500 seconds. It became evident that, even with a 500-second 
recovery period, full recuperation of viscoelastic strain in a highly modified asphalt binder tested at 
82°C remained unattainable. Inocente Domingas and Faxina (2022) also observed that a longer creep 
time revealed the negative impact of modifiers such as polyphosphoric acid (PPA), which can be used 
to stiffen asphalt binder. 

In summary, although prolonging recovery time facilitates increased viscoelastic strain recovery and 
prevents overestimation of viscoplastic strain experienced during the creep phase, practicality may 
be a concern. In addition, finding a universally applicable recovery time for different types of asphalt 
binder is also challenging. Thus, Masad et al. (2009) effectively developed a mechanistic modeling 
approach to separate viscoplastic strain from the total strain in each cycle. The calculated Jnr showed 
a stronger correlation with the rutting potential of asphalt mixtures. 

Effect of Number of Creep and Recovery Cycles 
The number of creep and recovery cycles in the MSCR test has also been a subject of concern. 
Increasing the number of cycles can result in a more consistent strain response and better 
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correlations with the rutting performance of asphalt mixtures (Golalipour et al., 2017). Studies 
suggest that a steady-state response is typically achieved after 25–30 cycles (Behnood & Olek, 2017; 
Golalipour et al., 2017). However, extending the number of cycles may lead to increased damage 
accumulation, impacting Jnr and %R. Striking a reasonable compromise between an extended number 
of cycles and potential damage propagation is essential. 

Effect of Adjusting and Adding Stress Levels 
The standard MSCR test’s two stress levels (0.1 kPa and 3.2 kPa) were chosen arbitrarily and may not 
represent real-life stresses for asphalt binder. In this regard, White (2017) discovered that the 
observed high-stress sensitivity was better accounted for by the low non-recoverable creep 
compliance at 0.1 kPa, rather than the high non-recoverable creep compliance at 3.2 kPa. Therefore, 
he suggested raising the MSCR low-stress threshold to induce sufficient deformation in the binder, 
thereby resulting in a non-recoverable creep compliance exceeding 0.1 kPa-1. However, specifying a 
low stress level that is universally applicable to all types of asphalt binder across various 
temperatures remains a challenging task. 

In response to the limitations of the standard MSCR test’s stress levels, researchers have considered 
an additional higher stress level (e.g., 10 kPa [Golalipour et al., 2017] and 12.8–40 kPa [Jafari et al., 
2022]) to enhance stress sensitivity representation. Increasing stress level in the MSCR test offers 
dual advantages: stronger correlation with asphalt mixture rutting performance (Jafari et al., 2022) 
and improved measurement repeatability compared to the lower stress level (Golalipour et al., 2017). 
Further exploration of the MSCR test can be found in a recent comprehensive review (Liu et al., 
2021b). 

Jnrdiff 

One of the merits of the MSCR test resides in its capacity to scrutinize nonlinear behavior exhibited 
by asphalt binder. The assessment of stress-sensitivity relies on the calculation of the percentage 
difference in non-recoverable creep compliance, denoted (Jnrdiff) as follows:  

 
Figure 8. Equation. Percentage difference in non-recoverable creep compliance. 

To ensure that the 𝐽𝐽𝑛𝑛𝑟𝑟3.2 value measured at the test temperature does not fall below the 𝐽𝐽𝑛𝑛𝑟𝑟0.1value 
measured at a temperature that is 6°C higher, 𝐽𝐽𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is capped at a maximum of 75%. In other 
words, this requirement exists to ensure the stress sensitivity is not too high when grade bumping of 
6°C is used. However, this indicator has prompted significant debate among researchers regarding its 
applicability concerning a specified threshold value. In light of the demonstrated favorable 
performance exhibited by a different asphalt binder that did not conform to the 75% criterion, 
Gaspar et al. (2019) opted to overlook said criterion when employing the MSCR test for the grading of 
a highly modified asphalt binder. Behnood and Olek (2017) reached a comparable conclusion, 
asserting that the universality of the percent difference criterion across all types of asphalt binder is 
disputable due to its reliance on factors such as the type of modifier and the specific testing 
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conditions, while Gundla et al. (2020) did not observe any correlation between this parameter and 
mixture rutting. To enhance the evaluation of asphalt binder stress sensitivity, Stempihar et al. (2018) 
recommended using a semilogarithmic graph to plot non-recoverable creep compliance against 
stress. Instead of relying on 𝐽𝐽𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, they introduced 𝐽𝐽𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, which quantifies stress sensitivity by 
calculating the change in non-recoverable creep compliance in response to incremental stress 
changes (i.e., 𝐽𝐽𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = (𝐽𝐽𝑛𝑛𝑟𝑟3.2 − 𝐽𝐽𝑛𝑛𝑟𝑟0.1)/3.1). This parameter better links the alterations in non-
recoverable compliance and rut depth and provided a more nuanced perspective on asphalt binder 
stress/temperature sensitivity. Ultimately, an extensive dataset was employed to define 𝐽𝐽𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 as a 
function of 𝐽𝐽𝑛𝑛𝑟𝑟3.2, leading to the subsequent establishment of a defined threshold. 

Impact of RAP Addition on Rutting Potential of Modified Binder 
Currently, many agencies use significant amounts of reclaimed asphalt pavement (RAP), for which 
blending the RAP with the asphalt binder and analyzing the blended residue are phases in the mix 
design asphalt binder selection process. In the literature, some research efforts have explored the 
influence of RAP addition on the MSCR outcomes of modified asphalt binders. In a study by Sing et al. 
(2017), the performance of crumb rubber modified asphalt binder (CRMB60 incorporated with 11% 
crumb rubber) blended with varying proportions (namely, 0%, 15%, 25%, and 40%) of asphalt binder 
extracted from RAP were assessed. Utilizing the MSCR and Linear Amplitude Sweep (LAS) methods, 
the rutting and fatigue resistances of CRMB60 both in the presence and absence of RAP were 
examined. The MSCR assessments revealed that the non-recoverable creep compliance (Jnr) of 
CRMB60 displayed a decline upon the addition of RAP up to 25%, signifying an enhancement in its 
resistance to rutting. Conversely, integrating a higher RAP proportion (40%) led to an elevated Jnr for 
CRMB60, signifying suboptimal rutting resistance relative to the standard CRMB60. From the LAS 
assessments, it was observed that the fatigue endurance of CRMB60, when combined with 15% and 
25% RAP, was inferior to the baseline CRMB60. 

Singh et al. (2016) evaluated the rutting potential of an SBS-modified asphalt binder (PMB40 infused 
with 3.5% SBS) combined with 0%, 15%, 25%, and 40% of RAP asphalt binder. They found that the 
inclusion of RAP asphalt binder considerably diminished the %R with recorded values for PMB40 
combined with 0%, 15%, 25%, and 40% RAP being 89%, 55%, 17%, and 18%, respectively. The most 
pronounced decline was observed with a RAP composition of 25% or more. In a parallel manner, the 
Jnr metric for the PMB40 asphalt binder escalated with increasing RAP proportions, moving from 0.2 
kPa-1 to 0.7 kPa-1, 1.2 kPa-1, and 1.1 kPa-1 as RAP increased from 0% to 15%, 25%, and 40%, 
correspondingly. This decline in R coupled with the spike in Jnr pointed toward a notably 
compromised resistance to rutting for the PMB40 asphalt binder when merged with RAP asphalt 
binder. In the graphical representation comparing %R and Jnr, data points for PMB40 blended with 
25% and 40% RAP asphalt binder fell below the AASHTO benchmark. This suggests that the 
incorporation of the RAP asphalt binder might have adversely affected the polymer matrix of the 
PMB40 asphalt binder, leading to suboptimal rutting resistance. 

In research by Zhou et al. (2019), PG 70-22 asphalt binder (with 3.0% SBS) was blended with RAP 
asphalt binder to yield blends comprising 15%, 30%, 40%, and 50% RAP asphalt binder. Evaluations 
utilizing the MSCR at 64°C revealed that the RAP integration led to a decrease in recovery yet had a 
beneficial influence on Jnr by reducing its value. In terms of the MSCR grading, the benchmark asphalt 
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binder was classified as PG64V-xx. However, blends with RAP content of 15%, 30%, 40%, and 50% 
were categorized as PG64V-xx, PG64V-xx, PG64E-xx, and PG64E-xx, respectively. 

It can be concluded that the impact of RAP on the MSCR results of asphalt binders appears to be 
contingent on the modifier. Incorporating RAP in accordance with AASHTO M 332 guidelines remains 
a challenging endeavor, warranting additional experimental research. 

ANALYSIS OF REPEATABILITY AND REPRODUCIBILITY 
Extensive research has been conducted to assess the repeatability and reproducibility of the MSCR 
test (Zhou et al., 2014; Hossain et al., 2016). Previously, a statement on precision and bias was 
included in AASHTO T350-19. The estimated repeatability and reproducibility values presented in 
Table 3 originate from examining test outcomes of four sets of AASHTO resource proficiency samples. 
This analysis involved data from 149 to 225 different laboratories for each sample pair. The study 
focused on four modified binder grades: PG 58-28, PG 70-28, PG 76-22, and PG 82-22. In this table, 
1s% denotes the coefficient of variation, while d2s% represents the acceptable range for two test 
results. 

Precision analysis has also been provided for the ER test in Table 4. This is based on the analysis of 
data resulting from tests by nine laboratories, each testing three replicate specimens. Criteria for 
judging the acceptability of two single measurements obtained by elastic recovery test method are 
given as follows: 

Although this test method describes a result as the average of three single measurements, the 
precision estimates shown as follows are based on the analysis of single measurements. For 
comparing two test results, the single-operator (1s) and (d2s) estimates would be reduced by a factor 
of 1/√3. The multilaboratory (1s) and (d2s) estimates would not change. 

Table 3. Estimated Repeatability and Reproducibility for MSCR Test (AASHTO T350-19) 

Condition Coefficient of 
Variation (1s%) 

Acceptable Range of 
Two Test Results (d2s%) 

Single-Operator Precision: 

Average Percent Recovery at 0.1 kPa, R0.1 1.6 4.4 

Average Percent Recovery at 3.2 kPa, R3.2 1.9 5.5 

Average Nonrecoverable Creep Compliance at 3.2 kPa, Jnr0.1 (kPa-1) 4.4 12.5 

Average Nonrecoverable Creep Compliance at 3.2 kPa, Jnr3.2 (kPa-1) 4.7 13.2 

Multi-Laboratory Precision: 

Average Percent Recovery at 0.1 kPa, R0.1 4.8 13.5 

Average Percent Recovery at 3.2 kPa, R3.2 4.5 12.7 

Average Nonrecoverable Creep Compliance at 3.2 kPa, Jnr0.1 (kPa-1) 11.7 33.1 

Average Nonrecoverable Creep Compliance at 3.2 kPa, Jnr3.2 (kPa-1) 10.8 30.7 
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Table 4. Estimated Repeatability and Reproducibility for Elastic Recovery Test (ASTM D6084-21) 

Materials Index Standard Deviation* Acceptable Range of Two 
Results* 

Single-operator precision: 
1 (unmodified) 0.91 2.6 

2 (modified) 0.56 1.6 
Multi-laboratory precision: 

1 (unmodified) 2.32 6.5 
2 (modified) 1.71 4.8 

*These numbers represent, respectively, the (1s) and (d2s) limits as described in Practice C670 

SPECIFICATION ADOPTION OF MSCR IN THE UNITED STATES 
The current MSCR specification, AASHTO M 332, has been adopted by 16 states for all asphalt binder 
grades, while 25 states continue to use the Standard Specification for Performance-Graded Asphalt 
Binder (AASHTO M 320) only or employ MSCR solely as a PG Plus test. Figure 9 presents a summary of 
the states and their adoption of MSCR. Table 5 summarizes the states that adopted AASHTO M 332, 
while Table 6 summarizes the states that use MSCR as a PG Plus test but continue to use AASHTO M 
320. Only three states, as far as the research team can tell, have no MSCR or ER requirement 
(Vermont, Mississippi, and North Carolina), now that Indiana DOT is adopting MSCR in the coming 
year. 

 
Figure 9. Graph. Summary of binder specifications (adopted from Asphalt Institute). 

States adopting M 332 for all grades, with or without retaining M 320 nomenclature

States that specify M 332 for some grades and M 220 for others or allows a substitution of M 332 for M 320 grades 

States are either still using the M 320 or using M 332 Recovery as a PG-Plus test
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Table 5. Summary of Binder Grades Used in States That Adopted AASHTO M 332 

State Asphalt Binder 

Connecticut 58S-28, 64S-22, 64S-28, 64E-22 

Iowa 52S-34, 52H-34, 52V-34, 52E-34, 58S-28, 58H-28, 58V-28, 58E-28E 

Kentucky 58-28 (58S-28), 64-22 (64-S22), 76-22 (64E-22) 

Maryland 58S-22, 58S-28, 64S-22, 64S-28, 64H-22, 64E-22 

Minnesota 46S-34, 52S-34, 58S-28, 58H-28, 58V-28, 58E-28, 58S-34, 58H-34, 58V-
34, 58E-34, 64S-22 

Nebraska 58S-34, 58H-34, 58V-34, 58E-34 

New York 58E-34, 64S-22, 64H-22, 64V-22, 64E-22 

North Dakota 58S-28, 58H-28, 58V-28, 58E-28, 58S-34, 58H-34, 58V-34, 58E-34 

Pennsylvania 46S-40, 52S-28, 58S-28, 58E-28, 64S-22, 64S-28, 64H-22, 64E-22, 64E-28 

Rhode Island 58S-28, 64S-22, 64S-28, 64E-28, 70E-34 

Virginia 58S-22, 64S-22, 64H-22, 64E-22, 76E-28 (High Polymer (HP)) 

Washington 52S-28, 58S-22, 58H-22, 58V-22, 58S-28, 64S-28, 64H-28, 64V-28 

West Virginia 58S-28, 64S-22, 64H-22, 64E-22 

Wisconsin 58S-28, 58H-28, 58V-28, 58E-28, 58S-34, 58H-34, 58V-34, 58-34E 

Florida 52-28, 58-22, 67-22, 76-22 (Polymer Modified Asphalt [PMA]), 76-22 
(Asphalt Rubber Binder [ARB]) 

Tennessee 64-22, 70-22, 76-22, 82-22 

Table 6. States That Have Adopted MSCR as a PG Plus Test but Use AASHTO M 320 

State Description 

Alaska Jnr and %R requirements at grade temperature for PG 52-40, 58-28, 58-
34, 64-40 

Nevada Jnr (2.0 max) and %R (40% min) required at grade temperature for PG 76-
22; Jnrdiff reported 

South Carolina Jnr (1.0 max) and %R (based on polymer modification curve in AASHTO 
R92) required at 64°C 

Texas %R requirements at grade temperature at 0.1 kPa stress level 

Utah Only reporting required 
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LINKING MSCR TO ELASTIC RECOVERY TEST RESULTS 
Using the DSR, Clopotel and Bahia (2012) put forth a novel approach called elastic recovery in the DSR 
(ER-DSR), intended as an alternative to the conventional elastic recovery (ER) testing method, which 
employs the ductility bath as the measurement apparatus. Their results indicated that the ER-DSR 
could capture the effects of additives and potentially replace the conventional ER test. The test 
overall could predict ER results with a coefficient of correlation of 0.85. However, there has not been 
a wealth of studies since then relating MSCR parameters to ER results, which are still used by many 
agencies who have not yet implemented MSCR. 

In Illinois, MSCR has not yet been implemented in any form, and the current asphalt binder 
specification still requires ER as a PG Plus test for polymer-modified asphalt binder. While it is 
understood well that the ER and MSCR results will not be a perfect 1:1 match, it is possible that MSCR 
could serve as a viable replacement for ER in the specification, because the goal of ER is to predict a 
binder’s ability to recover after deformation, similar to MSCR. It should also be noted that MSCR 
could potentially lead to a better indication of quality and quantity of polymer modification, 
compared to ER which serves as a simple check for polymer. However, it is not well understood how 
viable prediction of ER by MSCR results is. The goal of the next chapter, therefore, is to develop a 
predictive method for ER based on MSCR, high PG, and other known properties. Because IDOT has 
collected extensive MSCR data for modified binder over the last 17 years, this is possible. If a method 
at least as effective as the ER-DSR method can be developed, then it is likely advantageous for Illinois 
to implement MSCR and consider eliminating ER due to its time- and resource-consuming nature. It 
should also be noted that much of the next chapter is derived directly from a recently published 
journal article on the topic (Asadi & Hajj, 2024). 
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CHAPTER 2: ANALYSIS OF EXISTING IDOT MSCR DATA 

DATA EXPLORATION 
The Illinois Department of Transportation (IDOT) has performed internal MSCR testing on asphalt 
binder from various sampling sources over the last 17 years. This study analyzed IDOT’s existing MSCR 
dataset, along with other available high-temperature data for asphalt binder since 2006. The dataset 
includes MSCR non-recoverable creep compliance (Jnr) and percent recovery (%R) at two stress levels 
(i.e., 0.1 and 3.2 kPa), elastic recovery (ER) as measured by ASTM D6084 Procedure A, high 
performance grade (PG), and the estimated content of polymer modification derived from the results 
of the Fourier-transform infrared (FTIR) spectroscopy test, as well as polyphosphoric acid (PPA) 
estimation from x-ray fluorescence. Note that FTIR cannot accurately predict polymer content, so the 
values provided were only semi-quantitative. The initial dataset encompassed 1,457 data points, yet 
only a subset of data points included the complete set of features necessary for the prediction of the 
dependent variable, ER. Subsequently, through data cleansing and the application of anomaly 
detection techniques to identify the presence of outliers, a refined dataset comprising 703 data 
points was obtained. Table 7 presents the summary statistics of the dataset. Table 8 and 9 present 
the summary statistics for PG XX-22 and PG XX-28 asphalt binders, respectively.  

Table 7. Dataset Summary Statistics for All Asphalt Binders 

Variable Mean Standard 
Deviation Skewness Kurtosis Min 25% 

Quantile 
50% 

Quantile 
75% 

Quantile Max 

PG-HT 71.39 3.87 -0.26 -0.7 64 70 70 76 76 

%R_0.1 65.57 15.15 -0.34 -0.54 21.6 54.62 67.62 76.49 95.97 

%R_3.2 61.56 19.96 -0.5 -0.71 11.69 46.07 67 76.47 96.67 

Jnr_0.1 0.33 0.29 2.17 5.94 0.02 0.14 0.24 0.42 1.78 

Jnr_3.2 0.41 0.42 2.41 6.93 0.01 0.14 0.26 0.52 2.63 

Jnr_diff (%) 17.04 15.93 0.66 2.51 -43.05 6.72 14.25 25.83 95.95 

Polymer (%) 3.06 1.48 -0.69 0.43 0 2.65 3.2 3.97 7.3 

Elastic Recovery 85.54 5.38 -0.26 -0.46 68 81 86 89 99 

Table 8. Dataset Summary Statistics for 472 PG XX-22 Asphalt Binders 

Variable Mean Standard Deviation Min 25% Quantile 50% Quantile 75% Quantile Max 

R_0.1 63.38 14.76 17.91 52.62 66.32 73.14 92.69 

R_3.2 59.75 19.03 0.02 44.77 65.10 74.01 92.52 

Jnr_0.1 0.31 0.62 0.04 0.14 0.22 0.40 13.12 

Jnr_3.2 0.33 0.25 0.03 0.14 0.24 0.47 1.24 

Jnr_diff 14.35 12.00 -43.05 6.51 13.21 21.43 65.26 

Polymer (%) 2.96 1.38 0.00 2.60 3.08 3.78 7.30 

Elastic Recovery 84.49 5.19 3.80 81.00 85.00 88.00 98.00 
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Table 9. Dataset Summary Statistics for 231 PG XX-28 Asphalt Binders 

Variable Mean Standard 
Deviation Min 25% Quantile 50% Quantile 75% Quantile Max 

R_0.1 68.16 18.32 0.01 55.48 72.96 81.75 96.70 

R_3.2 63.13 23.93 6.01 45.04 69.33 83.50 96.67 

Jnr_0.1 0.45 0.43 0.02 0.14 0.31 0.61 1.94 

Jnr_3.2 0.60 0.64 0.01 0.13 0.33 0.82 2.64 

Jnr_diff 28.47 80.95 -43.05 7.90 20.23 37.84 1210.27 

Polymer (%) 3.16 1.74 0.00 2.60 3.58 4.20 7.30 
Elastic 

Recovery 87.43 5.71 68.00 84.00 89.00 91.00 99.00 

 

Figure 10 presents a scatterplot matrix designed to illustrate the bivariate relationships among 
various combinations of all variables in the dataset. The diagonal cells depict the correlation between 
each variable and itself using a density function. Percent recovery and Jnr exhibit asymmetrical 
distributions toward the left and right side at both stress levels, respectively. The observed trend of 
MSCR parameters with ER also aligns with the anticipated expectations. Moreover, based on the 
absence of discernible unusual patterns and outliers in the scatterplot matrix, it can be inferred that 
the dataset exhibits a relatively clean structure, indicating its potential suitability for the development 
of machine learning models. The target variable ER has shown a roughly normal distribution, and thus 
there is no need to employ techniques required for handling imbalanced datasets. 

The Pearson product-moment correlation coefficient (r) was employed to determine the strength of 
the linear association among all variables. This coefficient quantifies the relationship between 
variables x and y by dividing the covariance (𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦)) by the product of their respective standard 
deviations (𝜎𝜎𝑥𝑥  and 𝜎𝜎𝑦𝑦). To provide a comprehensive overview of the relationships between variables, 
a correlation matrix heatmap was utilized. Figure 11 presents a visualization summarizing the 
pairwise relationships among the variables for gaining insights into the overall correlation structure 
and potential associations within the dataset to be used as a basis for feature selection. Based on the 
empirical evidence that the polymer content lacks a predetermined parameter in real-world cases, 
coupled with its weak correlation with ER (r = 0.23), the research team disregarded this feature in 
subsequent analyses. It is noteworthy that despite the strong correlations (r = 0.97 and 0.99) 
between %R and Jnr at two stress levels, all of these features were retained due to the absence of 
overfitting concerns. 
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Figure 10. Graph. Visualization of pairwise relationships among variables using a scatterplot matrix. 
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Figure 11. Graph. Heatmap of Pearson correlation matrix. 

Impact of PPA Modification on MSCR Results 
Because of lack of data, one factor that could not be included in the dataset discussed above was the 
modification of asphalt binder with polyphosphoric acid (PPA). However, IDOT did identify a limited 
number of asphalt binders within the data provided that were suspected to be modified with PPA, 
which was semi-quantitatively identified using x-ray fluorescence. As part of this research, the 
research team aimed to determine if computed PPA content had any specific relationship with MSCR 
results. Figure 12 presents an example of the data for PPA content versus %R for the asphalt binder in 
this study, with two outliers removed because they showed greater than 90% PPA content, which was 
assumed to be an experimental or reporting error. There is not any apparent relationship between 
%R and PPA content at either stress level, with neither high nor low recovery observed. Therefore, it 
is likely that more controlled experiments need to be conducted that isolate the effect of PPA 
modification for a specific base binder to determine its effect on MSCR parameters. 
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Figure 12. Graph. %R vs. PPA content at (a) stress level of 0.1 kPa and (b) stress level of 3.2 kPa. 

% RECOVERY AS A SUPPLEMENTARY CRITERION FOR EVALUATING THE ELASTIC 
RESPONSE 
The existing AASHTO M 332 outlines a functional correlation between Jnr and %R at 3.2 kPa, which 
can serve as a basis for either approving or disapproving polymer-modified binders. In the context of 
the MSCR test conducted on an asphalt binder, the graphical representation of percent recovery 
versus non-recovery creep compliance, as delineated in AASHTO R 92-18, can serve as a means to 
identify the presence of an elastomeric polymer based on the equation in Figure 13. If the point 
plotted for 𝑅𝑅3.2 versus 𝐽𝐽𝑛𝑛𝑟𝑟3.2 aligns with or surpasses the curve, it indicates that the asphalt binder 
has been modified with an elastomeric polymer that meets the established criteria. Conversely, if the 
point falls below the curve, it signifies that the asphalt binder lacks such elastomeric polymer 
modification. Notably, 𝐽𝐽𝑛𝑛𝑟𝑟3.2 values less than 0.1 kPa-1 must exhibit a minimum 𝑅𝑅3.2 value of 55%, 
while 𝐽𝐽𝑛𝑛𝑟𝑟3.2 values exceeding 2 kPa-1 are not bound by any minimum 𝑅𝑅3.2 requirement. 

 

Figure 13. Equation. AASHTO %R versus Jnr relationship to identify the presence of a polymer. 

The current formula in the AASHTO specification erroneously categorizes a significant portion of 
unaltered binders as altered ones (see the continuous black curve in Figure 14). Considering these 
concerns, the research team aimed to revise the AASHTO M 332 curve with the objective of 
establishing boundaries that would minimize the potential for any adverse impact on binder 
performance resulting from the modification. Note that there were also a substantial number of 
binders, 86 to be exact, which are modified but fell below the black line representing the current 
AASHTO specification. The binders above Jnr of 1.5 kPa-1 are nearly all -28 binders, and therefore the 
high values of Jnr and low %R can be attributed to the wrong testing temperature, as the base binder 
before modification was likely high PG 58 rather than 64. Therefore, the testing temperature of 64°C 
was potentially the wrong temperature to examine this criterion, which was developed for PG 64 base 
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binders if this temperature is used for testing. However, the binders that had low recovery but fell 
below Jnr of 1.5 kPa-1 were nearly all -22 in low PG. These binders are by all appearances modified but 
still failed the current criterion and proposed ones. In Figure 14, FN represents “false negative,” or 
binders that are modified but fail, and FP represents “false positive,” or binders that are unmodified 
but passed the curve from AASHTO M332. 

Because of lack of data on unmodified binders, there were not many “false positive” binders. 
However, the ones that did fall just above the existing and proposed specification lines seemed to 
mostly be those few that were modified by ground tire rubber, which were considered “unmodified” 
as they did not contain modification by SBS in line with IDOT’s current specification. There was also 
one unmodified PG 70-22 binder, which is rare for Illinois, that appeared as a “false positive.” Finally, 
note that the proposed updated specification lines have advantages and disadvantages. Both lines 
are less likely to lead to false positives but will exclude more unmodified binders. However, this 
would not be a major issue, as it is still recommended to use ER as a backup test for failing modified 
binders, or to use our provided ER prediction tool. The pink line, however, could be used to 
comprehensively screen modified binders, even those with low PG of -28 but tested at 64°C, which 
provides a significant advantage in terms of implementing the test. Also, both have more stringent 
requirements than the current specification for low %R binders, which are appropriate based on the 
dataset. 

 
Figure 14. Graph. Prediction of polymer modification using MSCR results. 

FN

FP



20 

The revised limits, which are based on the comprehensive IDOT dataset employed in this research, 
are illustrated in Figure 14, and the associated relationships are detailed in equations in Figure 15 and 
16. 

 
Figure 15. Equation. Revised %R versus Jnr relationship: first option. 

 

Figure 16. Equation. Revised %R versus Jnr relationship: second option. 

MACHINE LEARNING MODEL FOR PREDICTING ELASTIC RECOVERY 
Based on the above results, elastic recovery could not be predicted by a single parameter from MSCR 
in a highly reliable way. Overall, %R at both stress levels had the best relationship with ER, as partially 
expected, but it was evident that neither was as effective as the prior relationship observed by 
Clopotel and Bahia (2012). Therefore, the research team envisioned a possible use of machine 
learning methods for predicting ER based on multiple inputs from MSCR as well as high PG and other 
known information about the binders. The following section provides background on the techniques 
employed to achieve this. 

Ensemble learning is a strategy employed to merge multiple machine learning (ML) algorithms, 
resulting in improved performance compared to using the algorithms individually. Instead of relying 
on a single model, the predictions of individual learners are combined using a combination rule to 
generate a more accurate and robust prediction. Ensemble learning techniques have proven highly 
effective in diverse machine learning applications and can be broadly classified into parallel and 
sequential ensembles. These approaches share similarities in aggregating the outcomes of multiple 
models; however, notable differences exist in the methods used to combine them. They exhibit clear 
distinctions in their training processes, strategies for addressing the bias-variance tradeoff, and 
approaches to diversifying weak learners. 

Bagging 
Breiman (1996) introduced bagging, which stands for bootstrap aggregating, and highlighted that 
perturbing the learning set could result in significant modifications in the obtained predictor. In 
essence, the bagging method encompasses the division of training data for each base learner through 
random sampling. This process generates diverse subsets that are employed to train individual base 
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models independently and in parallel. The purpose of bagging is to reduce variance by averaging the 
results from different models. This technique excels when the individual models have high variance 
and a tendency to overfit the training data. The primary objective of bagging is to reduce variance by 
combining the results obtained from multiple models. This technique particularly excels when the 
individual models exhibit high variance and a propensity to overfit the training data. In other words, 
when the algorithm used for model learning is inherently unstable (e.g., a decision tree), bagging 
significantly enhances the performance of base learners. Bagging delivers a valuable advantage by 
leveraging bootstrapping to introduce diversity in the input data, while reducing variance without 
increasing bias. It is worth noting that because the output of a bagging model is a combination of 
multiple learners, the resulting output consists of an average prediction along with a measure of 
variance. The latter can be interpreted as an indication of the uncertainty quantification of 
predictions.  

Random Forest Model 
The random forest algorithm (Breiman, 2001; Ho, 1995) is widely recognized as one of the most 
impactful bagged methods applied across a range of domains in the field of machine learning. A 
random forest can be seen as a collection of bagged decision trees, wherein the splitting criteria are 
slightly adjusted. The algorithm can be described as follows: 

1. 𝑚𝑚 datasets 𝐷𝐷1, 𝐷𝐷2, …, 𝐷𝐷𝑚𝑚 are sampled with replacement from the original dataset 𝐷𝐷. 

2. For each subset 𝐷𝐷𝑗𝑗 , a decision tree ℎ𝑗𝑗() (max-depth = ∞) is trained according to the following 
criterion: prior to each split, a random subsampling of 𝑘𝑘 ≤ 𝑑𝑑 features (without replacement) 
are performed, considering only these features for the split. The default value for 𝑘𝑘 in a 
regression problem is ⌊𝑑𝑑/3⌋, and the minimum node size is 5 (Hastie et al., 2009). 

3. The final prediction is: ℎ(𝐗𝐗) = 1
𝑚𝑚
∑ ℎ𝑗𝑗(𝐗𝐗)𝑚𝑚
𝑗𝑗=1  

In general, random forest employs bagging and feature randomness, specifically utilizing the random 
subspace technique, to construct a forest of decision trees that are uncorrelated. Furthermore, this 
algorithm is widely recognized as one of the most user-friendly ML models due to its minimal 
hyperparameter tuning demands and its ability to effectively handle a wide range of features, 
regardless of their type and scales, without requiring extensive preprocessing. 

Extra Trees Model 
Extra trees (ET) are an extension of random forest that introduce additional randomness into the 
tree-building process (Geurts et al., 2006). Despite their similarities, the two models are 
distinguishable in two key ways. First, instead of utilizing a bootstrap sample, the entirety of the 
learning sample is employed to train each tree in ET, potentially leading to an increase in variance. 
Second, the selection of cut points to split nodes are different. In ET, instead of calculating the locally 
optimal cut-point for each feature being considered, a random threshold is selected. The value is 
picked at random from a normal distribution that covers the range of the features in the training set. 
The node is finally divided according to the best scoring of many randomly generated splits (Geurts et 
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al., 2006). With the approach of randomly selecting split points, the ET algorithm also offers 
computational efficiency compared to random forest. 

Boosting 
In response to the well-known question posed by Michael Kearns about whether it is possible to 
combine weak learners (H: models slightly better than random guessing) to create a strong learner 
with low bias, Schapire (1999) introduced the influential boosting algorithm. These types of models 
are a group of ensemble models trained sequentially, with each subsequent model benefiting from 
the experiences of its predecessors. Starting with a simple weak learner, more complex models are 
developed by iteratively optimizing the weights and gradients of the training instances to reduce bias. 
In other words, all predictions from the weak learners are added together, with greater weight given 
to the models with the best track records. Due to its iterative nature, boosting is a computationally 
intensive process with high complexity compared to bagging models whose parallelization allows 
them to be computationally efficient. 

An ensemble (𝐻𝐻𝑇𝑇(𝑥𝑥) = ∑ 𝛼𝛼𝑡𝑡ℎ𝑡𝑡(𝑥𝑥)𝑇𝑇
𝑡𝑡=1 ) is generated through an iterative process, wherein the 

regressor 𝛼𝛼𝑡𝑡ℎ𝑡𝑡(𝑥𝑥) is sequentially incorporated into the ensemble during each iteration 𝑡𝑡. The stage-
wise construction of the ensemble bears a resemblance to gradient descent, with the distinction that 
instead of updating model parameters at each iteration, functions are added to the ensemble. Given 
the completion of 𝑡𝑡 iterations and the existence of an ensemble 𝐻𝐻𝑡𝑡(𝑥𝑥), the goal in iteration 𝑡𝑡 + 1 is 
incorporating a new weak learner ℎ𝑡𝑡+1 to the ensemble. To this end, the weak learner that minimizes 
the convex and differentiable loss to the greatest extent is sought. 

 
Figure 17. Equation. New weak learner ht+1 equation. 

Upon finding ℎ𝑡𝑡+1, the ensemble is updated (𝐻𝐻𝑡𝑡+ ≔ 𝐻𝐻𝑡𝑡 +  𝛼𝛼ℎ). Now, the objective is to determine 
the optimal step-size 𝛼𝛼 and weak learner ℎ that minimize the loss ℓ(𝐻𝐻 + 𝛼𝛼ℎ). In this regard, gradient 
descent in the functional space is utilized, starting with the application of the Taylor approximation 
on ℓ(𝐻𝐻 + 𝛼𝛼ℎ) using the equation in Figure 18. 

 
Figure 18. Equation. Taylor approximation of loss function. 

Note that the approximation is valid in a small vicinity surrounding ℓ(𝐻𝐻 + 𝛼𝛼ℎ) when 𝛼𝛼 is a sufficiently 
small constant. Using equations in Figure 17 and 18, an optimal ℎ can be found as presented in the 
equation in Figure 19. Thus, boosting can be implemented when we have an algorithm 𝔸𝔸 to solve 
ℎ𝑡𝑡+1 = argminℎ∈ℋ  ∑ 𝜕𝜕ℓ

𝜕𝜕[𝐻𝐻(𝑥𝑥𝑖𝑖)]
𝑛𝑛
𝑛𝑛=1 ℎ(𝑥𝑥).  
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Figure 19. Equation. Optimal solution for h. 

The boosting models used in this study are AdaBoost (Freund et al., 1999), gradient boosting decision 
tree (GBDT) (Friedman, 2001), extreme gradient boosting (XGBoost) (Chen & Guestrin, 2016), light 
gradient boosting machine (LightGBM) (Ke et al., 2017), and categorical boosting (CatBoost) 
(Prokhorenkova et al., 2018). 

AdaBoost 
AdaBoost is the pioneering boosting model initially developed for solving classification problems, and 
later, it was adapted for regression tasks (Drucker, 1997). The process starts with the initialization of 
data sample weights. A weak learner is then trained using the modified weights obtained from the 
initial iteration. In each subsequent iteration, the weights of samples with higher prediction errors 
are increased, while the weights of samples with lower prediction errors are decreased. As the 
training progresses, the impact of hard-to-predict samples intensifies, causing the weak learner to 
focus more on previously misestimated samples. Ultimately, the final prediction is achieved through a 
weighted voting approach. The AdaBoost algorithm demonstrates adaptability by accommodating a 
wide range of base learners, with the decision tree being a frequently preferred option. Note that 
AdaBoost has a limitation in its susceptibility to noisy data and outliers, which arises from its iterative 
learning approach, potentially increasing the risk of overfitting. 

GBDT 
Gradient boosting, also known as gradient boosted decision tree (GBDT), is a boosting technique that 
creates strong ensembles by developing base learners highly correlated with the negative gradient of 
the loss function for the entire ensemble (Friedman, 2001). The objective of gradient boosting is to 
discover an approximation, denoted as , for the function 𝐹𝐹∗(𝑥𝑥), that maps predictor variables 𝑥𝑥 
to their corresponding response variables 𝑦𝑦 within the training set 𝑆𝑆 = {𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛}1𝑁𝑁. This is achieved by 
minimizing the designated loss function. The outlined procedure of GBDT can be summarized as 
follows (Rao et al., 2019): 

Initially a constant value of mode (𝛽𝛽) is derived: 

 
Figure 20. Equation. Derivation of constant value of mode in GBDT. 

The gradient direction of residuals is computed for each iteration, with 𝑚𝑚 ranging from 1 to 𝑀𝑀, where 
𝑀𝑀 represents the total number of iterations. 
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Figure 21. Equation. Computing the gradient direction of residuals in GBDT. 

The initial model ℎ(𝑥𝑥𝑛𝑛;𝛼𝛼𝑚𝑚) is acquired by fitting the sample data, and the parameter 𝛼𝛼𝑚𝑚 is 
determined using the least square method as: 

 
Figure 22. Equation. Determining αm parameter in GBDT. 

By minimizing the loss function, a new step size for the model, called the current model weight, is 
calculated. 

 
Figure 23. Equation. Calculating the current model weight in GBDT. 

Finally, the model is updated as: 

 
Figure 24. Equation. Updating the GBDT model. 

This iterative process is performed until either the designated number of iterations is reached, or the 
convergence criteria are satisfied. 

XGBoost 
The XGBoost algorithm is a type of ensemble method that relies on decision trees and leverages the 
gradient boosting framework to enhance its performance. XGBoost stands apart from GBDT by 
including a regularization term in its objective function to prevent overfitting expressed as: 

 
Figure 25. Objective function of XGBoost. 

where the second term Ω serves to penalize the complexity of the model. This regularization term is 
defined as: 
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Figure 26. Equation. Regularization term in its objective function of XGBoost. 

in which γ is the complexity parameter that governs the minimum loss reduction gain necessary for 
splitting an internal node, 𝑇𝑇 is the number of leaves, 𝜆𝜆 represents a penalty parameter, and 𝑤𝑤 
denotes the output of each leaf node. Furthermore, unlike GBDT, which utilizes the first-order 
derivative, XGBoost employs a second-order Taylor series expansion of the objective function. Thus, 
the equation in Figure 25 can be rewritten as: 

 
Figure 27. Equation. Second-order Taylor series expansion of the objective function of XGBoost. 

where 𝑔𝑔𝑛𝑛 and ℎ𝑛𝑛  represent the first and second derivatives of the loss function, respectively. The 
ultimate loss value is derived from the summation of all individual loss values, each of which 
corresponds to the respective leaf nodes in the decision tree. Given that 𝐼𝐼𝑗𝑗 denotes all samples in leaf 
node 𝑗𝑗, the objective function is formulated as: 

 
Figure 28. Equation. Final form of objective function of XGBoost. 

While XGBoost possesses various advantages, it has the drawback of a high number of 
hyperparameters, which renders the tuning process challenging. 

LightGBM 
The light gradient boosting machine (LightGBM) is an efficient implementation of the gradient 
boosting algorithm that was devised in 2017 as a versatile tool for various ML tasks (Ke et al., 2017). It 
leverages two innovative techniques, gradient-based one-sided sampling (GOSS) and exclusive 
feature bundling (EFB), to accelerate training and obtain high accuracy. The GOSS technique, a 
modification of gradient boosting, prioritizes instances with larger gradients, leading to faster 
learning and decreased model complexity. The EFB technique conducts feature selection by 
combining sparse and mutually exclusive attributes and then bundles these features to reduce the 
dimensionality of the feature matrix. Despite its advantages, LightGBM is prone to overfitting in small 
training datasets as well as due to the generation of more complex trees resulting from employing 
leaf-wise tree splitting.  

CatBoost 
CatBoost is a state-of-the-art gradient boosting algorithm based on decision trees (Prokhorenkova et 
al., 2018), renowned for its success in handling classification, regression, and ranking tasks with 
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categorical features. This approach combines ordered boosting, random permutations, and gradient-
based optimization methodologies, facilitating remarkable performance on large and complex 
datasets with categorical features. It stands out from XGBoost and LightGBM due to its unique tree 
construction approach, which ensures balanced and symmetric trees. This strategy consistently 
selects the feature-split pair that minimizes loss within each iteration, leading to an optimal 
distribution of information across the trees. This balanced architecture reduces computational costs 
and serves as an effective form of regularization. 

CatBoost employs an enhanced and robust approach that mitigates overfitting while ensuring all 
examples in the training set are effectively used for model training. This approach entails randomly 
permuting the training set, and for each sample, the algorithm computes the average label value of 
the preceding sample with the same category value in the permutation sequence. Subsequently, a 
specific replacement scheme is employed, incorporating a prior value and its corresponding weight. 
This process effectively reduces noise stemming from low-frequency categories and plays a pivotal 
role in enhancing the overall performance of the algorithm (Dorogush et al., 2018). 

MODEL DEVELOPMENT 
Initially, the dataset was partitioned into two distinct subsets, with 85% designated for training 
purposes and the remaining 15% allocated for the test set. Due to the inherent benefits of ensemble 
tree-based models in effectively managing features across varying scales, it becomes unnecessary to 
perform data standardization. Then, a five-fold cross-validation technique was employed to fine-tune 
the model hyperparameters. Typically, hyperparameter search methods consist of grid search, 
Bayesian optimization, heuristic search, and randomized search (Feurer & Hutter, 2019). Given its 
efficiency in concurrently tuning multiple hyperparameters, the randomized search method was 
adopted to identify the optimal hyperparameter configuration. In this regard, the training set was 
randomly divided into five equitably sized subsamples. Among these subsamples, one was selected as 
the validation set, while the other four subsamples jointly constitute the training subset. This process 
was iteratively repeated five times, ensuring that each subsample gets the chance to serve as the 
validation set once. Consequently, the average accuracy across these five validation sets is calculated 
to ascertain the optimal values for the hyperparameters. Subsequently, the test set was utilized to 
assess the performance of the models. Finally, the model with the best overall performance was 
chosen for verifying trustworthiness and investigating feature importance. 

MODEL PERFORMANCE EVALUATION 
In this study, the performance evaluation of the developed ensemble models incorporates three 
goodness-of-fit measures. These measures include the coefficient of determination (R2) (the equation 
in Figure 29), which quantifies the portion of variance explained by the model, the mean absolute 
error (MAE) (the equation in Figure 30), describing the average discrepancy between measured and 
predicted ER values, and the root mean squared error (RMSE) (the equation in Figure 31), which 
describes the standard deviation of the prediction error. 
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Figure 29. Equation. Coefficient of determination equation. 

 
Figure 30. Equation. Mean absolute error equation. 

 
Figure 31. Equation. Root mean squared error equation. 

in which 𝑦𝑦𝑛𝑛 and ŷi represent the 𝑖𝑖th measured and predicted ER, and ȳ denotes the mean of 𝑦𝑦𝑛𝑛 values. 

MODEL INTERPRETATION USING SHAPLEY VALUE ANALYSIS 
Lundberg and Lee (2017) introduced Shapley Additive Explanations (SHAP) as a groundbreaking 
technique in the field of machine learning interpretation. This state-of-the-art approach, rooted in 
coalitional game theory, has gained significant traction due to its ability to unravel the intricate 
workings of ML models. Employing SHAP allows for a comprehensive understanding of the marginal 
contribution brought about by each individual feature in the prediction process. Unlike model-specific 
interpretation methods, SHAP is considered model-agnostic, meaning it can be applied to a wide 
range of models without relying on their internal architecture. At its core, SHAP operates by 
quantifying the impact of including or excluding a specific feature within a coalition of features. The 
Shapley value of a feature represents the average change in prediction when that feature joins the 
existing set of features. By computing these values for all features, SHAP uncovers the marginal 
contribution of each feature on the model’s output. One of the remarkable advantages of SHAP is its 
ability to provide both local and global interpretability. On a local level, SHAP values are computed for 
individual data points, shedding light on how each feature contributes to a specific prediction. On a 
global scale, SHAP values provide a holistic understanding of feature importance across the entire 
dataset. These values not only quantify the overall impact of a feature, but also indicate whether its 
effect on the model’s output is positive or negative. This global interpretability empowers 
practitioners to identify crucial features driving the model’s predictions and assess the robustness of 
their decision-making process. Thus, the resulting SHAP values provide a fair allocation of credit to 
each feature, considering their individual and collective contributions to the prediction process. 
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RESULTS AND DISCUSSIONS 

Performance of Ensemble Models 
The process of tuning model hyperparameters holds critical importance in the establishment of a 
robust model. This step ensures the model’s performance is finely calibrated, enhancing its reliability 
and efficacy. Table 10 and 11 provide documentation of the results derived from the rigorous 
optimization process, encompassing specific hyperparameter values in bagging and boosting 
algorithms, respectively.  

Table 10. Results of Hyperparameter Optimization for Bagging Models 

Algorithm Hyperparameter Description Search Selected 
Value 

BR 
n_estimators Number of trees [50-1000] 1000 

max_samples Maximum number of samples for 
training each tree [0.1-1] 0.3 

RF 

n_estimators Number of trees [50-1000] 400 

max_depth Maximum depth of the tree [5-50] 15 

min_samples_split Minimum number of samples for nodes 
split [2-20] 2 

min_samples_leaf Minimum number of samples for leaf 
nodes [1-15] 2 

ET 

n_estimators Number of trees [50-1000] 500 

max_depth Maximum depth of the tree [5-50] 50 

min_samples_split Minimum number of samples for nodes 
split [2-20] 10 

min_samples_leaf Minimum number of samples for leaf 
nodes [1-15] 3 
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Table 11. Results of Hyperparameter Optimization for Boosting Models 

Algorithm Hyperparameter Description Search Selected 
Value 

AdaBoost 
n_estimators  Number of trees [50-1000] 200 

learning_rate Shrinkage coefficient of each tree [0.01-0.5] 0.01 

GBDT 

n_estimators  Number of trees [50-1000] 750 

learning_rate Shrinkage coefficient of each tree [0.01-0.5] 0.01 

max_depth Maximum depth of a tree [3-11] 3 

min_samples_leaf Minimum number of samples for leaf 
nodes [1-15] 4 

min_samples_split Minimum number of samples for nodes 
split [2-20] 5 

XGBoost 

n_estimators  Number of trees [100-1000] 600 

learning_rate Shrinkage coefficient of each tree [0.01-0.3] 0.01 

max_depth Maximum depth of a tree [3-11] 7 

subsample Fraction of samples used for training 
each tree [0.7-1] 0.8 

colsample_bytree Fraction of features used for tree 
construction [0.6-1] 0.6 

reg_alpha L1 regularization [0-1] 0 

reg_lambda L2 regularization [0-1] 0.001 

LightGBM 

n_estimators  Number of trees [100-1000] 200 

learning_rate Shrinkage coefficient of each tree [0.01-0.3] 0.1 

max_depth Maximum depth of a tree [3-11] 5 

num_leaves  Number of leaves for each tree [10-200] 100 

bagging_fraction  Fraction of samples used for training 
each tree [0.7-1] 0.8 

feature_fraction  Fraction of features used for tree 
construction [0.6-1] 1 

min_data_in_leaf Minimum number of samples to form a 
leaf [10-200] 50 

lambda_l1 (or 
reg_alpha L1 regularization [0-1] 0.01 

lambda_l2 (or 
reg_lambda) L2 regularization [0-1] 0.2 

min_gain_to_split Minimum gain to make a partition on a 
leaf node [0-0.3] 0.3 
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Algorithm Hyperparameter Description Search Selected 
Value 

CatBoost 

iterations  Number of trees [100-1000] 400 

learning_rate Shrinkage coefficient of each tree [0.01-0.3] 0.01 

depth Maximum depth of the trees [3-11] 9 

subsample Fraction of samples for training each 
level of a tree [0.7-1] 0.8 

colsample_bylevel Fraction of features used for tree 
construction [0.6-1] 1 

min_data_in_leaf Minimum number of samples to form a 
leaf [10-100] 10 

l2_leaf_reg L2 regularization [0-10] 1 

 

Utilizing the optimal set of hyperparameters, Figures 32 and 33 display a performance evaluation of 
the developed bagging and boosting models, presenting a comparison between the predicted and 
measured ER values for the test set. As shown in Figure 29, the bagging models underwent scrutiny 
under varying error ranges: < 5%, 5%–10%, and > 10%. Extra trees displayed superior performance, 
achieving 86.36% within the < 5% range, 12.73% within 5%–10%, and 0.91% exceeding the > 10% 
threshold. In contrast, bagging regressor demonstrated higher error rates within the 5%–10% range, 
with 20% of predictions falling in this interval, and 1.82% of predictions beyond the > 10% boundary. 
The values of different error measures for both the training and testing sets of the bagging models 
are shown in Table 12. Among the evaluated bagging models, the extra trees (ET) model distinguishes 
itself with an extraordinary R2 value of 0.999 during the training phase, indicating an exceptionally 
precise fit to the training data. On the testing data, the extra trees model maintains its prominence by 
achieving the highest R2 value of 0.851, along with the lowest MAE and RMSE values of 1.64 and 2.39, 
respectively. These results underscore the superior predictive accuracy and generalization capacity of 
the extra trees model compared to the other two models. It is pertinent to note that through the 
manipulation of hyperparameters, we could alleviate overfitting. However, this led to diminished 
performance on the training set, subsequently resulting in a corresponding decline in the testing set 
performance. This discrepancy runs counter to our principal aim of enhancing the accuracy 
specifically for the testing data. For instance, the ET model’s hyperparameters can be fine-tuned to 
mitigate the issue of overfitting, resulting in an R2 of 0.895 for the training dataset and 0.822 for the 
testing dataset. However, an imperative remains to enhance the model’s performance concerning 
the testing data; thus, the set of hyperparameters in Table 10 that yields an R2 of 0.847 was retained. 
This approach has been similarly adopted for all bagging and boosting models. 
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Table 12. Performance of Bagging Models on Training and Testing Data 

Model 
Training Data  Testing Data 
R2 MAE RMSE  R2 MAE RMSE 

Bagging 0.921 1.01 1.52  0.739 2.19 2.92 
Random Forest 0.943 0.91 1.27  0.814 1.83 2.58 
Extra Trees 0.999 0.001 0.008  0.851 1.64 2.39 

 
Figure 32. Graph. Performance of (a) bagging, (b) random forest, and (c) extra trees on testing data. 

(a)

(b)

(c)
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Figure 33. Graph. Performance of (a) AdaBoost (b) GBDT, (c) XGBoost, (d) LightGBM, and (e) 

CatBoost on testing data. 

(a)

(b)

(c)

(e)

(d)
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For the boosting models, the performance analysis reveals intriguing insights into their predictive 
capabilities (Figure 33). Table 13 provides an overview of performance criteria for both the training 
and testing datasets. Among the developed boosting models, XGBoost and CatBoost stand out with 
noteworthy R2 values of 0.842 and 0.826 on the testing data, respectively. In addition, XGBoost 
achieved the lowest MAE and RMSE values of 1.69 and 2.45, respectively, signifying its precision in 
predicting ER values. During the training phase, XGBoost exhibited a remarkable R2 value of 0.997, 
while CatBoost and LightGBM demonstrated values of 0.939 and 0.918, respectively. The relatively 
smaller difference between their training and testing performance suggests a reduced likelihood of 
overfitting for these two models. GBDT delivered acceptable performance on the testing data, 
whereas AdaBoost struggled to discern the inherent distribution within the training data, leading to 
unsatisfactory performance. The error analysis of the boosting models presented in Figure 33 
revealed their distinct strengths in handling different error ranges. XGBoost demonstrated impressive 
precision, with 86.36% predictions within < 5% error and 11.82% predictions falling between 5% and 
10% error. Meanwhile, CatBoost and LightGBM achieved competitive performance. For larger errors 
exceeding 10%, all superior boosting models (i.e., XGBoost, CatBoost, and LightGBM) exhibited a 
similar proportion of 1.82% predictions. These results shed light on the models’ efficacy in handling 
varying degrees of prediction errors, aiding in making informed decisions for real-world applications. 

Table 13. Performance of Boosting Models on Training and Testing Data 

Model 
Training Data  Testing Data 
R2 MAE RMSE  R2 MAE RMSE 

AdaBoost 0.627 2.73 3.31  0.613 2.79 3.48 
GBDT 0.824 1.77 2.32  0.784 1.97 2.72 
XGBoost 0.997 0.19 0.27  0.842 1.69 2.45 
LightGBM 0.918 1.14 1.52  0.819 1.82 2.55 
CatBoost 0.939 1.08 1.34  0.826 1.77 2.52 

 

To further analyze the performance of the developed models, an examination of their residual values 
was conducted, as illustrated in Figure 34. The distribution of residuals (yi − ŷi) for a well-performing 
model should adhere to a normal distribution, and the average of the residuals should be 
approximately zero. The examination of residuals for all models revealed a general adherence to a 
roughly normal distribution. However, the extra trees model demonstrated superior performance 
compared to the other two bagging models, as evidenced by a pronounced clustering of data points 
around zero residuals in Figure 34-c. Within the domain of boosting models, the residual distribution 
for GBDT tends to approximate the normal distribution more closely (Figure 34-e), while a greater 
concentration of data points is evident around zero residuals for XGBoost and CatBoost as in Figure 
34-f and Figure 34-h, respectively.  

It is worth noting that a one-by-one comparison between residual distributions can serve as the basis 
for hypothesis testing (e.g., Student’s t-test or Welch’s t-test for this problem) to determine whether 
the two models are significantly different. To be more specific, the distribution of err(M1) - err(M2) 
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with a mean of zero can be considered a practical null hypothesis. Then, by calculating the t-statistic: 

 and comparing it to t0 a chosen significance level, we can investigate whether 
the null hypothesis is rejected. In light of the considerable number of models developed, 
necessitating extensive testing, and the fact that there is minimal differentiation among models with 
similar characteristics, the selection of superior models based on performance evaluation is deemed 
satisfactory. 

 
Figure 34. Graph. Residual distribution for ER predictions on the testing data for a) bagging, (b) 

random forest, (c) extra trees, (d) AdaBoost (e) GBDT, (f) XGBoost, (g) LightGBM, and (h) CatBoost. 

The model evaluation shows that bagging and boosting methods are effective in capturing complex 
relationships in the dataset. Extra trees excelled among bagging models, while XGBoost emerged as 
the top performer among boosting models. This highlights the potential of ensemble learning 
approaches for robust predictions of ER from DSR high-temperature results, which are even more 
efficient than ER-DSR (Clopotel & Bahia, 2012). To be more specific, the correlation between ER-DSR 
and traditional ER was investigated among 20 types of asphalt binder, including SBS-modified PG 70-
22 and PG 76-22, from 10 sources (Morshed et al., 2020). The R2 values were determined to be 0.67 
and 0.845 for unaged and RTFO-aged conditions, respectively, demonstrating the superior 
performance of the ET and XGBoost models developed in this study. Although it should be noted that, 
despite the rigorous hyperparameter tuning and utilization of ensemble learning methods to mitigate 
overfitting, a discrepancy is still observed between the model performance on training and testing 
data. Hyperparameter tuning involved fine-tuning critical parameters, including learning rates, 
regularization strengths, and tree depths, to strike an optimal balance between model complexity 
and generalization. Additionally, ensemble learning techniques (i.e., bagging and boosting) have been 
an integral part of our approach. By combining predictions from multiple base models, ensemble 
methods help in reducing the risk of overfitting. We engineered ensembles with diverse model 
architectures to bolster the stability and robustness of our predictions. In essence, the persistence of 

(c)
(a) (b) (c) (d)

(e)(e) (f) (g) (h)
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overfitting can be primarily attributed to the inherent complexities and unseen noise embedded 
within the dataset. To be more specific, the dataset spans over a 17-year period, introducing a 
potential source of aleatoric uncertainty. Aleatoric uncertainties, arising from the inherent 
randomness in the physical attributes of the system, the stochastic nature of input excitations, and 
considerable noise in the experimental data (Olivier et al., 2021), contribute to fluctuations in ER 
measurements. Factors influencing these fluctuations encompass testing equipment, specimen 
preparation techniques, and potential operator influence. Consequently, further research to refine 
and enhance the dataset may be necessary to achieve better generalization performance on the 
testing data. 

Comparison with Neural Networks 
In addition to ensemble models, we investigated the capabilities of neural networks (NNs) and 
compared the model’s predictive capability to those of extra trees and XGBoost. To tackle the 
sensitivity of neural net to differences in feature scales, all features were first normalized such that 
they fell within the range of zero to one. The NN’s hyperparameters encompass the number of 
hidden layers and nodes per layer, the type of nonlinearity, the loss function, the regularization 
method, and parameters related to optimization including the adopted method, learning rate 
schedule, minibatch size, and the number of epochs. 

After conducting an exhaustive search to identify the most accurate model, an architecture 
comprising three hidden layers, each with 50 nodes, was designed. As the type of nonlinearity, the 
rectified linear unit activation function was selected. To combat overfitting, regularization was 
employed through the dropout method, where some nodes in each forward pass during training 
were deactivated with a probability p of 0.15 obtained via a greedy search from p = 0.1 to 0.5. For 
optimization, the adaptive moment estimation (Adam) method was used. The learning rate and 
minibatch size were fine-tuned through a grid search, ranging from 0.1 to 1e-4 and 100 to 500, 
respectively. Ultimately, the minibatch size was set to 300 and the learning rate to 0.001 to achieve 
optimal performance. 

The results of the neural network with tuned hyperparameters on the testing data are illustrated in 
Figure 35. In terms of the chosen model evaluation criteria, the neural network with R2 = 0.82, MAE = 
1.80, and RMSE = 2.54 performed on par with random forest and LightGBM but did not outperform 
extra trees and XGBoost. Nonetheless, it is noteworthy that although a small portion (0.91%–1.82%) 
of predictions in all ensemble models surpassed the >10% error threshold, no such instances were 
observed for the NN model. In conclusion, based on these findings, the NN model does not exhibit 
superior performance compared to the best ensemble models in this study. 

The superiority of tree-based models in this study predominantly stems from the dataset’s 
characteristics. The relatively modest tabular dataset, comprising around 700 samples and six 
features, may not provide the necessary complexity or patterns for a deep neural network to 
effectively leverage its feature extraction capabilities. Conversely, tree-based models often exhibit 
robustness when confronted with smaller datasets and can efficiently exploit available information. 
In the context of deep learning performance, it is important to note that despite its achievements in 
text and image datasets, its superiority on tabular data remains uncertain (Grinsztajn et al., 2022). 
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Recent extensive benchmarking across various datasets has illustrated the excellence of tree-based 
models like XGBoost and Random Forests on medium-sized data (~10,000 samples), even without 
considering their faster computation (Grinsztajn et al., 2022). 

 
Figure 35. Graph. Performance of NN model on testing data. 

Therefore, upon confirming the trustworthiness of ET and XGBoost via Shapley analysis, as presented 
in the next section, they were selected as the best models. It is worth noting that the models were 
developed utilizing the IDOT database, where most binders underwent modification with SBS being 
the predominant modifier. Consequently, the database exhibits relatively high bounds for elastic 
recovery (ER) ranging from 61 to 99, which could be a limitation of the model. Future work is 
expected to incorporate asphalt binder with a wider range of elastic recovery values, including 
straight-run, unmodified binder. 

Model Interpretation with SHAP Values 
In this study, we employ SHAP analysis to assess the feature importance and trustworthiness of 
superior ensemble models (i.e., extra trees and XGBoost models). As shown in Figure 36, both models 
revealed R0.1, R3.2, Jnr0.1, and Jnr3.2 as their top four influential features. However, their least significant 
features differed; for ET, PG_HT and Jnrdiff were the least important, while for XGBoost, Jnrdiff and 
PG_HT were identified as the least impactful in that order. Notably, a comparative examination of the 
relative difference between R0.1 and R3.2 in XGBoost and extra trees demonstrated a higher disparity 
in the former, indicating a more pronounced impact of R0.1 in the latter model. The outcomes of this 
analysis provide essential insights into the primary determinants influencing the models’ predictions. 

R2 = 0.82 , MAE = 1.80, RMSE = 2.54
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It becomes evident that %R holds substantial importance in both models, suggesting its significance 
as a foundational element for a future MSCR specification. 

 
Figure 36. Graph. Feature importance for (a) extra trees and (b) XGBoost using testing data. 

Figure 37 presents an analysis of the impact of dataset features on elastic recovery (ER) as the output 
of the developed models. The x-axis portrays the SHAP value assigned to each test point, serving as 
an indicator of the feature’s relative significance for that specific instance. Each row in the 
visualization corresponds to a distinct feature, where the color of the points conveys the magnitude 
of the feature, with red denoting higher values and blue indicating lower values. In accordance with 
physical expectations, both models captured a positive correlation between %R for both stress levels. 
Conversely, the models demonstrate a negative correlation between Jnr, where the trend is more 
pronounced at the stress level of 3.2 kPa. Generally speaking, the results obtained from the SHAP 
analysis are consistent with prior research (D’Angelo, 2010; Moraes et al., 2017), providing 
supporting evidence that the MSCR test has the potential to replace the ER test, with a major focus 
on the %R parameter. In addition, the lower impact of the percent difference in non-recoverable 
creep compliance (Jnrdiff) is in line with previous studies that have shown the limitation of this 
parameter with a 75% threshold (Behnood & Olek, 2017; Gaspar et al., 2019; Stempihar et al., 2018). 

(a)

(b)
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Figure 37. Graph. Model interpretation for (a) extra trees and (b) XGBoost. 

Binder Clustering Using MSCR Results 
In this section, clustering analysis was employed to study asphalt binder based on MSCR parameters. 
Through the application of clustering techniques, the research team aimed to reveal intrinsic patterns 
and differences within the database, shedding light on how various types of binder can be 
distinguished using their MSCR characteristics. To this end, we first employed principal component 
analysis (PCA) to reduce the dimensionality of the dataset. Subsequently, the researchers determined 
the optimal number of clusters, and then applied the K-means algorithm to partition the data into the 
identified clusters to reflect their inherent similarities. PCA is a dimensionality reduction technique 
that transforms high-dimensional data into a lower-dimensional subspace while preserving the most 
important information. In this context, the first and second principal components explained 76.1% 
and 23.3% of the dataset’s variance, capturing a comprehensive picture of the data distribution. The 

(a)

(b)
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next critical step is to ascertain the optimal number of clusters within the dataset. The elbow method 
and Silhouette score are among the most common approaches in estimating the appropriate number 
of clusters (Nanjundan et al., 2019). The silhouette score evaluates how well a data point fits within 
its own cluster. Its value can range from −1 to 1, with higher values indicating better cluster 
coherence, while negative values suggest that data points may have been clustered incorrectly. The 
underlying concept of the elbow method is to ascertain the juncture in the plot where the inertia 
begins to flatten and create a distinct elbow shape. This critical point signifies that further inclusion of 
clusters no longer substantially reduces inertia, and it can be considered as the optimal choice of 
cluster numbers. 

Figure 38 demonstrates the results obtained by employing the Silhouette score and elbow method on 
the dataset. As depicted in Figure 38-a, the optimal number of clusters with the highest Silhouette 
score was two. The plot of the elbow method offers valuable indications of the optimal cluster 
number, although its determination remains subjective. The observed possibilities for the optimal 
cluster count are 2, 3, or 4, with 2 clusters aligning with the result derived from the Silhouette score. 

 
Figure 38. Graph. Determining the optimum number of clusters using (a) Silhouette method and (b) 

elbow method. 

Continuing the cluster analysis, the researchers proceed to visualize the dataset’s clustering 
outcomes based on different cluster configurations using the first and second principal components, 
as shown in Figure 39. The discernment of distinct patterns within clustered binders poses a 
considerable challenge, particularly when considering the knowledge of six different performance 
grades (i.e., PG 64-28, PG 64-22, PG 70-28, PG 70-22, PG 76-28, and PG 76-22), exhibiting polymer 
content within the range of 0%–7.3% in the dataset. Notwithstanding the overall efficacy 
demonstrated by the MSCR test, there exist promising avenues for the development of novel testing 
methodologies or the derivation of additional parameters from the MSCR test. Such endeavors are 
intended to enhance the differentiation capability among the diverse types of asphalt binder more 
effectively. 

(a) (b)
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Figure 39. Graph. Cluster analysis of test results based on: (a) two clusters, (b) three clusters, and 

(c) four clusters.  

(a) (b)

(c)
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CHAPTER 3: SUMMARY AND CONCLUSIONS 
This study consisted of two major parts. The first part was a literature and specification review aimed 
at uncovering the current state of the art in terms of multiple stress creep recovery (MSCR) test 
development and implementation. The second part aimed to develop a robust predictive model for 
asphalt binder elastic recovery (ER) using the MSCR test results based on a dataset provided by IDOT, 
so that the potential effectiveness of MSCR as an alternative to asphalt binder ER could be explored. 
The approach involved exploring ensemble learning methods, specifically tree-based bagging (e.g., 
random forest and extra trees) and boosting (e.g., AdaBoost, GBDT, XGBoost, LightGBM, and 
CatBoost). In this context, a hyperparameter tuning process was undertaken to determine the 
optimal configuration for each model. Additionally, SHAP analysis was employed to assess the feature 
importance and model interpretation. Moreover, clustering techniques were applied to identify 
patterns within the dataset. To this end, the dataset, which encompassed six distinct performance 
grades and a broad spectrum of polymer contents, underwent dimensionality reduction with PCA. 
Next, the optimal number of clusters was determined using the Silhouette score (2 clusters) and 
elbow method (2–4 clusters), and the K-means algorithm was applied. The findings of this study are 
summarized as follows: 

• A majority of states in the United States have implemented some form of the MSCR test. In 
general, states use the same criteria without consideration for low temperature PG or 
materials specific to the state. Among these states, there is a split between those that have 
implemented MSCR based on AASHTO M 332 and those that have only used MSCR as a “PG 
Plus” test. In addition, some require MSCR for all asphalt binders and some only for specific 
grades, mostly modified asphalt binders. 

• The MSCR test has substantial advantages over the current Superpave rutting parameter—
namely its assessment of polymer-modified asphalt’s ability to recover, even after large 
deformation, rather than remaining only within the linear viscoelastic range. However, the 
test in its current form still has shortcomings, including stress levels that remain too low and a 
lack of sufficient time to fully recover the recoverable portion of the creep response. 
However, any changes to the test protocol or analysis procedures must be considered in the 
context of ease of adaptation using current rheometers and testing time. 

• The performance of the developed models demonstrated the effectiveness of ensemble 
learning methods in capturing complex relationships within the data. Extra trees stood out as 
the top model among the bagging algorithms, while extreme gradient boosting (XGBoost) 
emerged as the most accurate among the boosting models. Both models exhibited superior 
predictive accuracy, with extra trees achieving an R2 value of 0.852 and an RMSE of 2.39 on 
the testing data. The corresponding values for XGBoost were 0.842 and 2.45, respectively. 
These findings underscore the potential of ensemble learning for precise predictions of 
asphalt binder ER from MSCR test results. Remarkably, with the use of these ML methods, the 
MSCR test can predict the results of the traditional ER test more effectively than the ER-DSR 
test previously proposed in the literature, despite its different testing temperature range, with 
MSCR being concentrated on a high temperature (64℃). 



42 

• Shapley values analysis provided insights into the feature importance and verified the 
trustworthiness of the superior ensemble models. Recovery at both stress levels of 0.1 and 3.2 
kPa were identified as the top influential features in both extra trees and XGBoost models. 
Meanwhile, Jnrdiff had very little significance, despite its widespread use as a specification 
parameter, which was consistent with findings in the literature. 

• The results of the clustering analysis revealed challenges in distinguishing distinct patterns 
within the clustered asphalt binders, indicating potential for modifying MSCR analysis as well 
as further test development to enhance the differentiation of asphalt binders. 

• There are several mixture and field validation studies for MSCR in the existing literature, but 
none focused on Illinois-specific materials, especially considering ongoing research on 
modifying polymer-modified asphalt binder with softeners. In addition, many tests have 
focused on validating MSCR using outdated tests such as Marshall flow. A comprehensive 
rutting study involving validation using the Hamburg wheel-tracking device with Illinois 
materials is warranted before implementation of an Illinois-specific MSCR specification can be 
reliably performed when it comes to improving asphalt binder quality. 

• However, the implementation of MSCR as a surrogate for ER for IDOT screening of asphalt 
binder, in terms of determining if an asphalt binder is modified, is appropriate at this time and 
should be considered due to overall ease of testing. IDOT can also use the predictive algorithm 
developed in this research study, which will be supplied in the form of a simple web tool, to 
predict the ER of an asphalt binder based on MSCR, high PG, and polymer content from FTIR.  

• It is believed that implementing MSCR in place of ER would not result in a decline in binder 
quality, as nearly all binders that pass the AASHTO M332 requirement to be considered 
modified were modified. The only exception is a few asphalt binders that were modified with 
ground tire rubber (GTR), but not SBS as is conventional in Illinois. However, GTR-modified 
asphalt binder may have a performance similar to certain SBS-modified asphalt binders, which 
has not been studied in Illinois so far. On the other hand, MSCR did erroneously categorize 
some modified asphalt binders as unmodified. For many of these, no ER result was available, 
while many also passed ER. It is suggested that IDOT run ER as a backup test for an asphalt 
binder that should be modified but fails MSCR, to be sure before failing it. Furthermore, IDOT 
can use our developed machine learning tool, which only considered asphalt binders for which 
the ER result was available, to predict. Therefore, MSCR can partially replace ER, at least as a 
PG Plus test. This will lead to substantial time savings for IDOT in terms of reducing the 
dependance on ER, which is a very time-consuming test compared to using the DSR. However, 
ER has not been analyzed as a tool for examining performance. Therefore, it cannot be stated, 
as a result of this study, that there is any conclusive way to determine if ER or MSCR is a 
valuable tool in terms of actual asphalt binder performance, rather than simply detecting the 
presence of polymer. A comprehensive study with mixture validation that explores the 
concept of grade bumping would result in a better understanding of the ability of MSCR to 
predict not only the presence of SBS, which has been established herein, but also the quality 
of modification and the ability of the test to predict asphalt binder rutting potential, 
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irrespective of modification state. It is also suggested that the current timing would be very 
appropriate for such a study, given IDOT is currently evaluating the use of softeners in 
conjunction with SBS polymer in asphalt binder. 

In conclusion, this report highlights the efficacy of ensemble learning methods, particularly extra 
trees and XGBoost, in accurately predicting asphalt binder elastic recovery from MSCR test results. 
These models significantly contribute to the understanding of asphalt binder behavior and hold 
practical implications for states still utilizing ER as a PG Plus test, demonstrating the advantages for 
them to adopt MSCR into their specifications. Future work will focus on examining relationships 
between MSCR parameters and mixture performance to determine the best way to implement this 
test for Illinois, including traffic thresholds. 
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